Цитата(Ярослав_ @ 13.5.2009, 18:28)

Мне кажется, что нужная фигура будет как на рисунке, минус конус конечно...
Задача поставлена не вполне корректно или даже совсем некорректно, и эта некорректность возникла из-за того, что только лишь одно условие z>=0 записано неравенством, а остальные два - уравнениями. Уравнение даёт поверхность, она разделяет пространство на две части и не указывает какую из частей надо брать. В результате деления пространства поверхностями частей становится ещё больше. Если лишь одна из частей окажется ограниченной, то вопроса о корректности не возникнет. Но здесь это не так - таких ограниченных частей две, а если бы вместо z>=0 было бы z=0, то было бы ещё хуже - таких частей было бы три.
Нарисуйте в полуплоскости YZ (Y>0) кривые
z=4-y^2/4
z=(1/sqrt2)y
z=0
z=-(1/sqrt2)y
Эти кривые разбивают полуплоскость на части, из которых только три ограничены:
1) (1/sqrt2)y<z<4-y^2/4
2) 0<z<(1/sqrt2)y
3) -(1/sqrt2)y<z<min{0; 4-y^2/4}
Возможность вращения фигуры (3) вокруг оси OZ отсечена неравенством z>0, а вот в пользу вращения первой или второй части никаких указаний в условии нет. Я вращал первую, а Вам кажется, что надо вращать вторую.
Я вижу, что второй вариант возможен, но он не обязателен. К чему автор задачи относит неравенство z>0?
1) Надо взять верхнюю половину конуса и пересечь её с параболлоидом, в результате чего только одна часть пространства окажется ограниченной. Не задуряясь корректностью постановки, я это и посчитал.
2) Надо взять часть верхнего полупространства, находящейся под верхней половиной конуса и из полученного вырезать параболлоидом вращения ограниченную часть. Вы это тело нарисовали и считаете, что надо было считать его объём.
В пользу второго понимания вижу только один аргумент: если бы был первый вариант то неравенство z>0 можно было бы сделать излишним - для этого достаточно было указать только две поверхности z=sqrt{x^2+y^2} и z=4-(x^2+y^2)/4.
Но это уже, знаете ли - ребус, не имеющий ничего общего с корректной постановкой задачи. В конце концов, даже если и в самом деле имелся в виду второй вариант, удобнее найти объём первой части и вычесть его из совокупного объёма первой и второй частей, представляющий собой холмик, образованный параболлоидом вращения и плоскостью.