Ксеня
Сообщение
#20172 27.10.2008, 21:44
Найти наибольшее и наименьшее значение функции на отрезке от -3 до 3
y= корень^3 ( 2*(x+1)^2*(5-x)-2 )
Dimka
Сообщение
#20173 27.10.2008, 21:53
Вычислите y(-3)=.., вычислите y(3)=....
Найдите производную и решите уравнение y'=0, x0=... Проверьте принадлежит ли x0 промежутку [-3;3]. Если да, то дополнительно вычислите y(x0)=....
Среди вычисленных значений выбирите наибольшее и наименьшее значение.
Ксеня
Сообщение
#20174 27.10.2008, 21:57
Цитата(Dimka @ 27.10.2008, 21:53)

Вычислите y(-3)=.., вычислите y(3)=....
Найдите производную и решите уравнение y'=0, x0=... Проверьте принадлежит ли x0 промежутку [-3;3]. Если да, то дополнительно вычислите y(x0)=....
Среди вычисленных значений выбирите наибольшее и наименьшее значение.
А для тупых поподробнее можно?
Dimka
Сообщение
#20175 27.10.2008, 22:02
Цитата(Ксеня @ 28.10.2008, 0:57)

А для тупых поподробнее можно?
неа. Это школьная задачка. Посмотрите примеры и т.п.
Ксеня
Сообщение
#20176 27.10.2008, 22:06
Цитата(Dimka @ 27.10.2008, 22:02)

неа. Это школьная задачка. Посмотрите примеры и т.п.
Я школу закончила 13 лет назад и туплю по полной в том числе и с примерами
Тролль
Сообщение
#20177 27.10.2008, 22:16
Цитата(Ксеня @ 28.10.2008, 0:57)

А для тупых поподробнее можно?
Да подробнее некуда. Посмотрите раздел дифференцирование, там много примеров на данную тему.
Ксеня
Сообщение
#20178 27.10.2008, 22:20
Цитата(Тролль @ 27.10.2008, 22:16)

Да подробнее некуда. Посмотрите раздел дифференцирование, там много примеров на данную тему.
С квадратными корнями и 2-мя х-сами да, а с кубическими?????? и с 2мя скобками нету............
Тролль
Сообщение
#20179 27.10.2008, 22:31
Принцип решения тот же.
Надо просто таблицу производных взять и правила вычисления производных и найти производную y.
y = корень третьей степени из всего выражения?
Тролль
Сообщение
#20180 27.10.2008, 22:44
y = (2 * (x + 1)^2 * (5 - x) - 2)^(1/3)
y' = 1/3 * (2 * (x + 1)^2 * (5 - x) - 2)^(-2/3) * (2 * (x + 1)^2 * (5 - x) - 2)' =
= 1/3 * (2 * (x + 1)^2 * (5 - x) - 2)^(-2/3) * (2 * ((x + 1)^2)' * (5 - x) + 2 * (x + 1)^2 * (5 - x)') =
= 1/3 * (2 * (x + 1)^2 * (5 - x) - 2)^(-2/3) * (2 * 2 * (x + 1) * (5 - x) - 2 * (x + 1)^2) = 1/3 * (2 * (x + 1)^2 * (5 - x) - 2)^(-2/3) * (4 * (x + 1) * (5 - x) - 2 * (x + 1)^2)
y' = 0 => 1/3 * (2 * (x + 1)^2 * (5 - x) - 2)^(-2/3) * (4 * (x + 1) * (5 - x) - 2 * (x + 1)^2) = 0
4 * (x + 1) * (5 - x) - 2 * (x + 1)^2 = 0
Решаем квадратное уравнение. Получаем, что x1 = -1, x2 = 3.
-1 и 3 принадлежат отрезку [-3;3].
Осталось найти y(-3), y(-1), y(3) и выбрать из них наибольшее и наименьшее значения.
Ксеня
Сообщение
#20181 27.10.2008, 22:53
Спасибо Спасибо Спасибо Спасибо Спасибо
Это текстовая версия — только основной контент. Для просмотра полной версии этой страницы, пожалуйста,
нажмите сюда.