Цитата(Тролль @ 21.4.2011, 22:16)

Решаем уравнение v'-v/x+xv=0
y'-y/x=-1/x-xy
y=uv
y'=u'v+uv'
u'v+uv'-uv/x+xuv=-1/x
u'v+u(v'-v/x+xv)=-1/x
v'-v/x+xv=0
dv/dx=v/x-xv
dv/v=(1-x^2)dx/x
c=0
ln|v|=ln|x|-(x^2)/2 +с
v = |x|e^(c-(x^2)/2)
u'( |x|e^(c-(x^2)/2))=-1/x
du/dx( |x|e^(c-(x^2)/2)) = -1/x \: ( |x|e^(c-(x^2)/2) )
du/dx = -1/ ( x( |x|e^(c-(x^2)/2) ) )
du = -dx/ ( x( |x|e^(c-(x^2)/2) ) )
u = -ln | x( |x|e^(c-(x^2)/2) ) |
y = -ln | x( |x|e^(c-(x^2)/2) ) |*|x|e^(c-(x^2)/2)