иришечка 72
Сообщение
#55588 8.4.2010, 6:13
xy``=y`*ln(y`/x)
решение.
я ввела замену переменных: y`/x=t, тогда
y``=t`x+t, подставила в исходное
t`x+t=t*lnt
t=exp(x*c+1)
y`=x*exp(x*c+1)
применила интегрирование по частям
y=(x*exp(x*c+1)/c-(exp(x*c+1)/c^2+c1
tig81
Сообщение
#55593 8.4.2010, 8:05
Цитата(иришечка 72 @ 8.4.2010, 9:13)

t`x+t=t*lnt
t=exp(x*c+1)
Распишите подробнее.
иришечка 72
Сообщение
#55600 8.4.2010, 10:47
уравнение с разделяющими переменными
t`x+t=t*lnt
t`/(t*lnt-1)=1/x
in dt/(t*(lnt-1))=dx/x
in d(lnt-1)/(lnt-1)=ln x
ln(lnt-1)=ln(x*c)
lnt=x*c+1
t=exp(x*c+1)
tig81
Сообщение
#55602 8.4.2010, 10:56
Ясно, спасибо. Похоже на правду.
Yanochka
Сообщение
#76997 17.10.2011, 17:04
а почему мы в последней строчке делим на С и С^2?
распишите,пожалуйста!!
Dimka
Сообщение
#76998 17.10.2011, 18:26
т.к. берется интеграл
1/с int e^(xc+1) dx
tig81
Сообщение
#76999 17.10.2011, 18:58
А у вас на что получается надо делить?
Yanochka
Сообщение
#77000 17.10.2011, 19:43
видимо я что то не так поняла
почему вообще вылазит 1/с..это же константа..??
у меня получается
int(x*e^(xc+1) dx)
u=x du=dx
dv= e^(xc+1) v=e^(xc+1)
=> x*e^(xc+1)-inte^(xc+1) dx=x*e^(xc+1)-e^(xc+1) +C1
Dimka
Сообщение
#77001 17.10.2011, 20:08
Цитата(Yanochka @ 17.10.2011, 23:43)

видимо я что то не так поняла
почему вообще вылазит 1/с..это же константа..??
у меня получается
int(x*e^(xc+1) dx)
u=x du=dx
dv= e^(xc+1)dx v=(1/c)*e^(xc+1)
=>
интеграл неправильно вычислили
Yanochka
Сообщение
#77002 17.10.2011, 20:16
спасибо))
Это текстовая версия — только основной контент. Для просмотра полной версии этой страницы, пожалуйста,
нажмите сюда.