Задача №2766 : Пусть Fn(x) = [сумма(по i от нуля до n-1)((1/n)*F(x+i/n))], здесь Fn - функциональная последовательность. F(x) - непрерывная на (-inf,+inf) функция. Доказать, что последовательность Fn(x) сходится равномерно на любом конечном сегменте [a,b].
Я так полагаю, что каждый член последовательности является интегральной суммой, предел последовательности существует => существует предел интегральной суммы => функция интегрируема(непрерывна по условию)... Теперь пытаюсь связать все это с равномерной сходимостью:) не понимаю как.