Лаврик
Сообщение
#52786 15.2.2010, 12:54
Задача 6.
На каждой из десяти одинаковых карточек написаны одна из следующих букв: Т, С, Н, М, И, К, О, Л, У, П,. Карточки тщательны перемешаны. Найти вероятность того, что на семи вынутых по одной и расположенных "в одну линию" карточках можно прочесть слово СПУТНИК.
Решение:
Р(А)=1/7*1/6*1/5*1/4*1/3*1/2*1=1/5040
Ответ: 1/5040
Ярослав_
Сообщение
#52793 15.2.2010, 13:09
Цитата
Р(А)=1/7*1/6*1/5*1/4*1/3*1/2*1=1/5040
Ответ: 1/5040
Это было бы верно, если бы карточек с такими буквами было ровно 7, а карточек с буковками на самом деле больше...
Лаврик
Сообщение
#52794 15.2.2010, 13:24
Я перерешал задачу №4 в предыдущей теме, будьте любезны, проверьте
А геометрическая вероятность мне все же неподвластна. С задачей с буквами сейчас разберусь.
Задача 4.
На склад поступает продукция с двух фабрик, причем продукция первой фабрики составляет 60%, а второй - 40%. Известно, что средний процент нестандартных изделий для первой фабрики равен 3%, для второй - 2%. Найти вероятность того, что наудачу взятое изделие произведено на первой фабрике, если оно оказалось стандартным.
Решение:
События А - взятое изделие стандартное
А/Н1 - наудачу взятое изделие произведено на первой фабрике
Н1-продукция первой фабрики
Н2-продукция второй фабрики
Решение:
Р(Н1)=0,6, Р(Н2)=0,4, Р(А/Н1)=0,97, Р(А/Н2)=0,98
Р(А)=0,6*0,97+0,4*0,98=0,582+0,392=0,974
Р(Н1/А)=Р(А|Н1)*Р(Н1)/Р(А)=0,97*0,6/0,974=0,6
Ответ:0,6
Лаврик
Сообщение
#52801 15.2.2010, 13:37
Задача 6.
На каждой из десяти одинаковых карточек написаны одна из следующих букв: Т, С, Н, М, И, К, О, Л, У, П,. Карточки тщательны перемешаны. Найти вероятность того, что на семи вынутых по одной и расположенных "в одну линию" карточках можно прочесть слово СПУТНИК.
Решение:
n=С(10;7) = 10*9*8*7*6*5*4/7*6*5*4*3*2*1=604800
m=C(7;1)=7
Р(А)=1/86400
Ответ: 1/86400
Juliya
Сообщение
#52802 15.2.2010, 13:45
нет, здесь же важен порядок следования букв в словах => нужны размещения, а не сочетания...
если теоремой умножения, то просто выбирайте из 10 карточек. Первая буква - с вероятностью 1/10, вторая - 1/9 и т.д.. (буквы же вроде не повторяются?)
Лаврик
Сообщение
#52803 15.2.2010, 13:49
Тогда получается так: 1/10*1/9*1/8*1/7*1/6*1/5*1/4=1/604800
Лаврик
Сообщение
#52804 15.2.2010, 14:09
Задача 4.
На склад поступает продукция с двух фабрик, причем продукция первой фабрики составляет 60%, а второй - 40%. Известно, что средний процент нестандартных изделий для первой фабрики равен 3%, для второй - 2%. Найти вероятность того, что наудачу взятое изделие произведено на первой фабрике, если оно оказалось НЕстандартным.
Решение:
События А - взятое изделие нестандартное
А/Н1 - наудачу взятое изделие произведено на первой фабрике
Н1-продукция первой фабрики
Н2-продукция второй фабрики
Решение:
Р(Н1)=0,6, Р(Н2)=0,4, Р(А/Н1)=0,03, Р(А/Н2)=0,02
Р(А)=0,6*0,03+0,4*0,02=0,018+0,008=0,026
Р(Н!/А)=Р(Н1)*Р(Н1)/Р(А)=0,03*0,6/0,026=0,7
Ответ:0,7
Juliya
Сообщение
#52806 15.2.2010, 14:13
да.
да.
Лаврик
Сообщение
#52807 15.2.2010, 14:26
Задача 7.
Круговая мишень состоит из 3-х зон. Вероятность попадания в первую - 0,12; во вторую - 0,23; в третью - 0,3 Найти вероятность промаха.
Решение:
События А - промах
не А - попадание
А=не А1+не А2+не А3, где не А1, не А2, не А3 - попадание в первую, вторую и третью зоны
Р(не А) = Р(не А1)+Р(не А2)+Р(не А3)=0,12+0,23+0,3=0,65
Р(А)=1-Р(не А)=1-0,65=0,35
Ответ:0,35
Задача 8.
Для некоторой местности среднее число дождливых дней в августе равно 15. чему равна вероятность того, что в первые два дня августа не будет ни одного дождливого дня?
Решение
События А - первого августа дождя не будет
В - второго августа дождя не будет
Р(А)=15/31 Ра(В) = 14/30
Р(А)-Ра(В)=15/31*14/30=0,23
Ответ: 0,23
Juliya
Сообщение
#52834 15.2.2010, 21:58
Цитата(Лаврик @ 15.2.2010, 17:26)

Задача 7.
Круговая мишень состоит из 3-х зон. Вероятность попадания в первую - 0,12; во вторую - 0,23; в третью - 0,3 Найти вероятность промаха.
Решение:
События А - промах
не А - попадание
А=не А1+не А2+не А3, где не А1, не А2, не А3 - попадание в первую, вторую и третью зоны
Р(не А) = Р(не А1)+Р(не А2)+Р(не А3)=0,12+0,23+0,3=0,65
Р(А)=1-Р(не А)=1-0,65=0,35
Ответ:0,35
Задача 8.
Для некоторой местности среднее число дождливых дней в августе равно 15. чему равна вероятность того, что в первые два дня августа не будет ни одного дождливого дня?
Решение
События А - первого августа дождя не будет
В - второго августа дождя не будет
Р(А)=15/31 Ра(В) = 14/30
Р(А)-Ра(В)=15/31*14/30=0,23
Ответ: 0,23
7-я - да.
8-я - я не считаю, что он зависимые.. Среднее дает вероятность для каждого дня 15/31. Но это ничего не значит - может каждый день идти дождь, а может ни одного дня.. Ведь дождливые дни не выбираются из какой-то корзинки, где они постепенно заканчиваются..
Мне кажется, здесь (15/31)^2
Лаврик
Сообщение
#52852 16.2.2010, 14:22
Позвольте с Вами не согласиться, или я в армии совсем мозги растерял......
malkolm
Сообщение
#52855 16.2.2010, 16:13
Напрасно не соглашаетесь. "Среднее число дождливых дней равно 15" означает не то, что в августе ровно 15 дождливых дней, а то, что за много-много лет наблюдений отношение числа д.д. в августе к числу всех дней августа ~ 15. Т.е. что шанс каждому конкретному дню быть дождливым есть 15/31 независимо от остальных дней.
Juliya
Сообщение
#52856 16.2.2010, 16:41
смешной..

т.е. Вы всерьез считаете, что не может быть такого августа, чтоб было 0,1,5,15,16,20 или 31 день дождливые?? Вы считаете погоду неким автоматом, выдающим количество дождливых дней согласно стандарту?

я столько аргументов привела..
ну это Ваше право - отстаивайте преподавателю Ваше мнение.. только аргументы Вы какие выдвинете? Я Вам свои выдвинула..
Лаврик
Сообщение
#52867 16.2.2010, 22:48
Я же не указывал конкретно на то, что Вы неправы, а лишь чуточку засомневался. А преподавателю я ничего доказывать не буду, скорее соглашусь с вами, тем более, некому доказывать. Преподаватель, который нас учил, уже давно не преподает, пока я был в армии, много воды утекло.
Кстати, большое спасибо за оказанную помощь, позвольте Вас еще побеспокоить..
Извините, если был некорректен, просто очень тяжело после такого разрыва что-либо восстанавливать, тем более, когда помочь некому.
Лаврик
Сообщение
#52868 16.2.2010, 23:01
Задача 9.
Четыре стрелка стреляют по мишени. Вероятность попадания в цель для первого стрелка равна 0,45; для второго - 0,5; для третьего - 0,6; для четвертого - 0,7
Найти вероятность того, что в результате однократного выстрела всех четырех стрелков по мишени в ней будет хотя бы одна пробоина.
Решение:
События А - в мишени будет хотя бы одна пробоина
А1 - попадание первого стрелка
А2 - попадание второго стрелка
А3 - попадание третьего стрелка
А4 - попадание четвертого стрелка
Р(не А1)=1-0,45=0,55, Р(не А2)=1-0,5=0,5,
Р(не А3)=1-0,6=0,4, Р(не А4)=1-0,7=0,3
Р(А)=1-0,55*0,5*0,4*0,3=0,967
Ответ:0,967
Относительно предыдущей задачи, напряг мозги и понял, что был не прав
malkolm
Сообщение
#52872 17.2.2010, 2:46
Верно.
Лаврик
Сообщение
#52873 17.2.2010, 6:14
Задача 10.
Литье в болванках поступает из двух заготовительных цехов: 70% из первого и 30% из второго. При этом материал первого цеха имеет брак 10%, а второго - 20%. Найти вероятность того, что взятая наугад болванка изготовлена первым цехом, если она оказалась без дефектов.
Решение:
События А - болванка без дефектов
Н1-болванка изготовлена первым цехом
Н2 - болванка изготовлена вторым цехом
Р(Н1)=0,7, Р(Н2)=0,3, Р(А/Н1)=0,1, Р(А/Н2)=0,2
Р(А)=0,7*0,1+0,3*0,2=0,13
Р(Н1/А)=Р(А/Н1)*Р(Н1)/Р(А)=0,1*0,7/0,13=0,54
Ответ:0,54
Задача 11.
Абонент забыл 3 последние цифры номера телефона и потому набирает наугад. Какова вероятность того, что он верно наберет нужный ему номер (забытые цифры различны)?
Решение:
Событие А - набраны нужные цифры
n=А(10,3)=10*9*3=720
m=1
Р=m/n=1/720
Ответ: 720
Ярослав_
Сообщение
#52874 17.2.2010, 6:44
Цитата
Задача 10.
Литье в болванках поступает из двух заготовительных цехов: 70% из первого и 30% из второго. При этом материал первого цеха имеет брак 10%, а второго - 20%. Найти вероятность того, что взятая наугад болванка изготовлена первым цехом, если она оказалась без дефектов.
Решение:
События А - болванка без дефектов
Н1-болванка изготовлена первым цехом
Н2 - болванка изготовлена вторым цехом
Р(Н1)=0,7, Р(Н2)=0,3, Р(А/Н1)=0,1, Р(А/Н2)=0,2
Р(А)=0,7*0,1+0,3*0,2=0,13
Р(Н1/А)=Р(А/Н1)*Р(Н1)/Р(А)=0,1*0,7/0,13=0,54
Ответ:0,54
Вы нашли вероятность быть бракованной болванки из первого цеха, если выбранная болванка оказалась бракованной, а в задаче про хорошую спрашивают...

Цитата
Задача 11.
Абонент забыл 3 последние цифры номера телефона и потому набирает наугад. Какова вероятность того, что он верно наберет нужный ему номер (забытые цифры различны)?
Решение:
Событие А - набраны нужные цифры
n=А(10,3)=10*9*8=720
m=1
Р=m/n=1/720
Ответ: 1/720
Подправил...
Лаврик
Сообщение
#52875 17.2.2010, 6:53
Задача 12.
На двух автоматах изготавливают одинаковые детали. Производительность первого автомата в 2 раза больше, чем второго. Вероятность изготовления детали высшего качества на первом автомате - 0,95, а на втором - 0,97. Детали в обоих автоматов поступают вместе на склад. Определить вероятность того, что наудачу взятая деталь окажется высшего качества.
Решение:
Событие А-деталь высшего качества
В1-деталь произведена на первым автоматом
В2- деталь произведена на вторым автоматом
Р(В1)=2/3, Р(В2)=1/3
РВ1(А)=0,95, РВ2(А)=0,97
Р(А)=2/3*0,95+1/3*0,97=0,21
Ответ:0,21
Спасибо, Ярослав.
Ярослав_
Сообщение
#52876 17.2.2010, 6:57
Цитата(Лаврик @ 17.2.2010, 9:53)

Задача 12.
На двух автоматах изготавливают одинаковые детали. Производительность первого автомата в 2 раза больше, чем второго. Вероятность изготовления детали высшего качества на первом автомате - 0,95, а на втором - 0,97. Детали в обоих автоматов поступают вместе на склад. Определить вероятность того, что наудачу взятая деталь окажется высшего качества.
Решение:
Событие А-деталь высшего качества
В1-деталь произведена на первым автоматом
В2- деталь произведена на вторым автоматом
Р(В1)=2/3, Р(В2)=1/3
РВ1(А)=0,95, РВ2(А)=0,97
Р(А)=2/3*0,95+1/3*0,97=0,21
Ответ:0,21
Спасибо, Ярослав.
То что мало не смущает?! Всё верно, только в арифметике ошибка... Р=0.956667
Лаврик
Сообщение
#52877 17.2.2010, 6:58
Должно быть так. Невнимателен, второй раз допускаю подобную ошибку
Задача 10.
Литье в болванках поступает из двух заготовительных цехов: 70% из первого и 30% из второго. При этом материал первого цеха имеет брак 10%, а второго - 20%. Найти вероятность того, что взятая наугад болванка изготовлена первым цехом, если она оказалась без дефектов.
Решение:
События А - болванка без дефектов
Н1-болванка изготовлена первым цехом
Н2 - болванка изготовлена вторым цехом
Р(Н1)=0,7, Р(Н2)=0,3, Р(А/Н1)=0,9, Р(А/Н2)=0,8
Р(А)=0,7*0,9+0,3*0,8=0,87
Р(Н1/А)=Р(А/Н1)*Р(Н1)/Р(А)=0,9*0,7/0,87=0,72
Ответ:0,72
Ярослав_
Сообщение
#52878 17.2.2010, 7:01
Теперь верно...
Лаврик
Сообщение
#52879 17.2.2010, 7:10
Задача 12
Вероятность попадания в цель при стрельбе из первого орудия равна 0,8; при стрельбе из второго орудия - 0,7 Найти вероятность поражения цели при одновременном выстреле обоих орудий. Замечание: поражение - хотя бы одно попадание из какого-либо орудия
Решение
Событие А - поражение цели первым орудием
В - вторым
Р(АВ)=Р(А)Р(В)=0,7*0,8=0,56 - без учета замечания
Р=1-0,8*0,7=0,44 - с учетом замечания
Однако, неверно
Ярослав_
Сообщение
#52880 17.2.2010, 7:16
Замечание дано насчет того, что считать поражением нужно хотя бы одно попадание... Вот это
Цитата
Р(АВ)=Р(А)Р(В)=0,7*0,8=0,56
Событие - оба орудия попали, это событие отличается от ХОТЯ БЫ ОДНО попадание...
Лаврик
Сообщение
#52881 17.2.2010, 7:20
Задача 13.
Из десяти билетов лотереи выигрышными являются два. Определить вероятность того, что среди наудачу взятых 5 билетов хотя бы один выигрышный.
Решение
1-8/10*7/10*6/10*5/10*4/10=0,932
Ответ: 0,932
Ярослав_
Сообщение
#52882 17.2.2010, 7:28
Ну уж прямо очень много вышло...
Задача с шариками.
В урне 2 белых и 8 черных шаров.
Наудачу выбираем 5 шаров, какова вероятность вытащить хотя бы один белый шар?!
Лаврик
Сообщение
#52883 17.2.2010, 7:29
Задача 12
Вероятность попадания в цель при стрельбе из первого орудия равна 0,8; при стрельбе из второго орудия - 0,7 Найти вероятность поражения цели при одновременном выстреле обоих орудий. Замечание: поражение - хотя бы одно попадание из какого-либо орудия
Решение
События А - хотя бы одно попадание в цель
А1-попадание первого орудия
А2-попадание второго орудия
Р(не А1)=1-0,8=0,2, Р(не А2)=1-0,7=0,3
Р(А)=1-0,2*0,3=0,94
Ответ:0,94
Лаврик
Сообщение
#52884 17.2.2010, 7:40
В урне 2 белых и 8 черных шаров.
Наудачу выбираем 5 шаров, какова вероятность вытащить хотя бы один белый шар?!
Решение:
n=С(10,5)=10*9*8*7*6/5=6048
не В - извлечены все черные шары
Число исходов, благоприятствующих не В - 5/8=0,625
Р(не В)=0,625/6048=0,00010
Р(В)=1-0,00010=0,9999
Что-то намудрил
Ярослав_
Сообщение
#52885 17.2.2010, 7:55
Цитата
Решение:
n=С(10,5)=10*9*8*7*6/5=6048
Там не просто 5, а 5!=1*2*3*4*5
m=C(2;1)*C(8;4)+C(2;2)*C(8;3)
Цитата
Решение
1-8/10*7/10*6/10*5/10*4/10=0,932
А здесь ошибка вот какая.
События:
А=все билеты проигрышные
Б=хотя бы один выигрышный
Р(Б)=1-Р(А)
Р(А)=Р(П)*Р(П|П)*....*Р(П|ПППП)=(8/10)*(7/9)*(6/8)*...*(4/6)
П - проигрышный билет
Лаврик
Сообщение
#52886 17.2.2010, 8:06
Спасибо!
А еще говорят: "Тяжело в ученье, легко в бою". В бою мне действительно было намного легче.
Задача 14.
В студии 3 телекамеры. Для каждой камеры вероятность того, что она включена в данный момент, равна 0,7. Найти вероятность того, что в данный момент включена хотя бы одна камера
Решение:
1-(1-0,7)^3=1-0,027=0,973
Ответ:0,973
Задач1 12 переделал, так верно?
Ярослав_
Сообщение
#52887 17.2.2010, 9:13
Цитата
Задача 14.
В студии 3 телекамеры. Для каждой камеры вероятность того, что она включена в данный момент, равна 0,7. Найти вероятность того, что в данный момент включена хотя бы одна камера
Решение:
1-(1-0,7)^3=1-0,027=0,973
Ответ:0,973
Ну да, правильно...
Цитата(Лаврик @ 17.2.2010, 10:20)

Задача 13.
Из десяти билетов лотереи выигрышными являются два. Определить вероятность того, что среди наудачу взятых 5 билетов хотя бы один выигрышный.
Решение
1-8/10*7/10*6/10*5/10*4/10=0,932
Ответ: 0,932
-------------------------------------------
В урне 2 белых и 8 черных шаров.
Наудачу выбираем 5 шаров, какова вероятность вытащить хотя бы один белый шар?!
Решение:
n=С(10,5)=10*9*8*7*6/5=6048
не В - извлечены все черные шары
Число исходов, благоприятствующих не В - 5/8=0,625
Р(не В)=0,625/6048=0,00010
Р(В)=1-0,00010=0,9999
Что-то намудрил
Ну дак ответ всё-таки какой получился?!
Лаврик
Сообщение
#52889 17.2.2010, 9:32
Задача 13
Из десяти билетов лотереи выигрышными являются два. Определить вероятность того, что среди наудачу взятых 5 билетов хотя бы один выигрышный.
Ответ: 0,78
Ярослав_
Сообщение
#52891 17.2.2010, 9:41
Цитата(Лаврик @ 17.2.2010, 12:32)

Задача 13
Из десяти билетов лотереи выигрышными являются два. Определить вероятность того, что среди наудачу взятых 5 билетов хотя бы один выигрышный.
Ответ: 0,78
Угу, Р=0,777777778~0.78
Лаврик
Сообщение
#52892 17.2.2010, 10:01
Задача
В урне 2 белых и 8 черных шаров.
Наудачу выбираем 5 шаров. Какова вероятность вытащить хотя бы один белый шар?
Решение:
n=С(10,5)=10*9*8*7*6/5!=252
m= С(2,1)*С(8,4)+С(2,2)*С(8,3)=196
m/n=196/252=0,78
Ответ:0,78
Задача 15.
Дается залп из двух орудий по мишени. Вероятность попадания из первого орудия равна 0,85;, из второго-0,91. Найти вероятность поражения цели
Решение:
События А - поражение цели первым орудием
В-поражение цели вторым орудием
События А и В - независимы
Р(АВ)= Р(А)Р(В)=0,85*0,91=0,77
Ответ:0,77
Задача 16.
Набирая номер телефона, вы забыли две последние цифры и помните только, что они были разные. Какова вероятность набрать номер верно наугад?
Решение:
Событие А - набраны две нужные цифры
С(10,2)=10*9=90
n=90
m=1
Р(А)=1/90
Ответ: 1/90
Ярослав, я не тормоз, я медленный газ, именно поэтому так и не пойму: задача 12 верна или нет?
Ярослав_
Сообщение
#52893 17.2.2010, 10:03
По-моему вы решаете одну задачу, только с разными числами и названиями предметов...

Цитата
Задача 16.
Набирая номер телефона, вы забыли две последние цифры и помните только, что они были разные. Какова вероятность набрать номер верно наугад?
Решение:
Событие А - набраны две нужные цифры
С(10,2)=10*9=90
n=90
m=1
Р(А)=1/90
Ответ: 1/90
Вы же решали такую задачу уже. Здесь общее количество не сочетание, а размещение будет, порядок важен. Хотя судя по ответу, это опечатка...
Лаврик
Сообщение
#52895 17.2.2010, 10:24
Задача 17.
Брошены одновременно две монеты. Какова вероятность появления герба на обоих монетах?
Решение:
События А - появление герба на первой монете
В - появление герба на второй монете
Р(А)=1/2, Р(В)=1/2
Р(АВ)=Р(А)*Р(В)=1/2*1/2=1/4
Ответ: 1/4
Лаврик
Сообщение
#52897 17.2.2010, 11:31
Задача 17.
Из партии изделий товаровед отбирает изделия высшего сорта. Вероятность того, что наудачу взятое изделие окажется высшего сорта, равно 0,8. Найти вероятность того, что из трех проверенных изделий будет только 2 изделия высшего сорта.
Решения:
Р(А)*Р(А)*Р(не А)+Р(не А)*Р(А)*Р(А)+Р(А)*Р(не А)*Р(А)=3Р(А)*Р(А)*Р(не А)=3(0,8)*(0,8)*(0,2)=0,384
Ответ: 0,384
Juliya
Сообщение
#52930 18.2.2010, 15:40
верно, но лучше и быстрее по формуле Бернулли.
Лаврик
Сообщение
#52934 18.2.2010, 16:32
Задача.
Имеются три одинаковые на вид урны с шарами: в первой урне - 3 белых и 4 черных, во второй - 2 белых и 2 черных; в третьей - 3 белых и 1 черный. Найти вероятность того, что извлеченный шар оказался белым.
Решение: События А - появление белого шара
Н1 - шар вынут из первой урны
Н2 - шар вынут из второй урны
Н3 - шар вынут из третьей урны
Р(Н1)=Р(Н2)=Р(Н3)=1/3
Р(А/Н1)=3/7, Р(А/Н2)=1/2, Р(А/Н3)= 3/4
Р(А)=1/3*3/7+1/3*1/2+1/3*3/4=0,56
Ответ:0,56
А тут по-моему намудрил, проверьте, пожалуйста.
Задача.
В партии из 300 изделий имеется 15 бракованных. Найти вероятность того, что из четырех взятых наудачу изделий - 2 годные и 2 бракованные.
Решение:
Событие А - из четырех взятых наудачу изделий - 2 годные и 2 бракованные
С(300,4)=300*299*298*297/4*3*2*1=330791175
С(15,2)*С(285,2)=15*14/2*285*284/2=4249350
Р(А)= С(15,2)*С(285,2)/С(300,4)=0,013
Ответ:0,013
Juliya
Сообщение
#52937 18.2.2010, 16:41
Почему, все верно

обе.
Лаврик
Сообщение
#52939 18.2.2010, 17:05
Спасибо!