Пожалуйста, помогите найти урaвнeниe кaсaтeльнoй к пoвeрхнoсти x^3y^2z - xz^2 + 2z = 9 в тoчкe (1, -2, 3). насколько я понял первое слагаемое(x^3y^2z) имеет 3хуровневую структуру, так?
Точка не принадлежит поверхности, следовательно нахождение касательной не сводится к использованию формулы F'x (x0, y0, z0) · (x − x0) + F'y (x0, y0, z0) · (y − y0) + F'z (x0, y0, z0) · (z − z0) = 0, правильно?
Еще вызвал затруднения вопрос по отысканию частных производных, к примеру при y...
Помогите пожалуйста.